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Abstract

The methodology and a rigorous solution formulation are presented for stress
intensity factors (SIF’s, k) and total strain energy release rates (SERR, Gr)of a
multicracked plate, that has fully interacting cracks and is subjected to a far-field
arbitrary stress state. The fundamental perturbation problem is derived, and the
steps needed to formulate the system of singular integral equations whose solution
gives rise to the evaluation of the STF’s are identified. Parametric studies are con-
ducted for two, three and four crack problems. The sepsitivity and characteristics
of the model is demonstrated.

Nomenclature
a inclination angle between inner tips of two parallel cracks
Bir, Bmz direction cosines between two local coordinate systems
€t strain tensor
L four roots of the characteristic equation
Pj angle defining orientation of local coordinate system
0%, »(o7) far-field and total stress field, respectively
0% x)Ovy> IXY components of stress in global coordinate system
0% stress from the perturbation problem in 7 local frame
oh transformed jt* crack stressed to the pt* local frame
&7 normalized real variables
o(s,y) Fourier transform of the stress function with respect to x
Q angle between L — T and X — Y coordinate systems



- a,b,c,d roots of the characteristic equation (real numbers)
G5 half crack length
b11,12 122 16 126 166 compliant matrix coefficient in z; — y; frame
T auxiliary functions
ky, k2 mode-I and mode-II stress intensity factors
kery Fredholm kernels
Di — normal traction at crack surface
g; — shear traction at crack surface
r; — position vector defining the origin of a local coordinate system
riX,T5Y — components of the position vector r;
s — Fourier variable
t — real variable along a crack axis
u, v — displacement associated with x and y coordinates, respectively
w — weight function
(z;,%5), (X,Y), (L, T) — local, global and material coordinates (L - strong direction)
(4] — kernel matrix
Bi1,12 ,22 566 — compliant matrix coefficient in L — T frame
Cem — functions of s in Fourier space (i.e., constants in x, y-real space)
D;, S;, R;,Q; — constants of substitution
Dy, Dy — horizontal and vertical distances between crack tips
Err, Brr, Gz, VIT — material’s parameters in L — T frame
EXY, ExY, EX?, Ep®» — modified stiffness parameters
Fi(z;,v5) — Airy stress function
Gr — total strain energy release rate
H,i(1p) — discrete auxiliary function
Kers — effective stress intensity factor
{R} — loading vector
Qg""), g'eg) — (iso) stands for isotropic singular, (reg) for nonsingular part

2 INTRODUCTION

Consider multiple cracks embedded in an infinite anisotropic plate (Fig. 1(a)). The
plate is under a far-field stress denoted by 07, (in perticular 0% x, O3y, and o%y, where
(X,Y) is the global coordinate system), and the cracks are defined in their local frames
(x;,y;) (Fig. 1(b)). The origin of each local frame is defined by the position vector 1j,
and the orientation of the local frame with respect to the global frame is defined by the
angle p;. Each crack is symmetrically situated within its own coordinate system and is
2a; long, as shown in Fig. 1(b).

The general solution formulation can be outlined in four basic steps. The first step
is to derive the local stress equations for each crack in its respective local coordinate
system. This derivation is achieved by defining the fundamental problem; that is a single
crack in an infinite anisotropic plane (Fig. 1(b)). The fundamental problem is then
decomposed into two subproblems: the problem of the undamaged plate containing an
imaginary crack (Fig. 1(c)), and the perturbation problem (Fig. 1(d)) of a plate with
a single crack subjected to the appropriate crack-surface tractions which are found from
the solution of the complementary undamaged problem. The analysis of the perturbation



problem leads to singular stresses that govern local crack-tip behavior.

The second step is to formulate the total perturbation stress field for each crack, which
includes the interaction of all cracks through the summation of the transformed local
stresses of all other cracks. In the third step of the formulation, the total stress equations
are normalized. A set of Cauchy-type singular integral equations, expressed in terms
of unknown auxiliary functions, is obtained by subjecting the total perturbation stress
equations to the crack-surface traction field at each crack location. The fourth and final
step of the formulation is to express the stress intensity factors (SIF’s, kjand ko) in terms
of the discrete auxiliary functions Hy;(7p) evaluated at each crack tip. These discrete
auxiliary functions are obtained by implementing of the Lobatto-Chebyshev collocation
technique. Finally, the strain energy release rate (SERR, Gr) is calculated in terms of

SIF’s.

(€) (d)

(-]

i
Figure 1: Muliticracked plate geometry and method of solution. (a) Multicracked plate.
(b) Fundamental problem for jth crack. (c) Undamaged plate. (d) Perturbation problem.



3 LOCAL STRESS FORMULATION

Consider the fundamental problem (Fig. 1(b)), which is defined as a single crack in
an infinite anisotropic plate; its solution can be obtained by decomposing it into an
undamaged problem (Fig. 1(c)) and a perturbation problem (Fig. 1(d)). The essence
of this decomposition is that the traction forces applied along the crack surface in the
perturbation problem are the opposite of the obtained stress field of the undamaged plate
at the particular location of the imaginary crack. As a result, the undamaged plate’s
traction field can be defined in terms of the normal (p;) and shear (g;) stress components
along the imaginary crack surface:

Pi(z5) = 0yyy;(25,0) 1)
Qj(xj) = Oz;y; (zj ) 0) (2)
where
Oyy05 (24, 0) = 0% x sinp; + opy cos 2p; — %y sin 2p; (3)
0%y — 0oy .
Uzjvj(xjvo) =% 2 YY sin 2p; +a§tY cos 2p; (4)

The mixed boundary conditions for the perturbation part of the fundamental problem
(Fig. 1(d)) are expressed in terms of stresses

Oyiy; = —Pi (:B_,-) and Oziy; = -Qi(x.‘i) (5)
along the crack surface (i.e., ¥; = 0 and — a; < z; < a;), and in terms of continuity of
displacements

vt=v" and ut=u" (6)

outside of the crack (i.e., y; = 0 and |z;| > g, see Fig. 1(b)). Here the superscript m4?
indicates the value of displacement at a point approached from the positive side of the
plate, (i.e., y > 0), whereas »_» indicates the same point approached from the negative
side of the plate (i.e., y <0). )

The governing equation for the preceding two-dimensional anisotropic plate problem
can be expressed in terms of the Airy stress function Fj(z;, y;) a8

&’ F 8‘F HF *rr rF
where
mem  pedpE =3 md vl @

Here, for general two-dimensional anisotropy b11, be2, b12, be, bog,and bes are independent.

In this paper, we will be primarily concerned with applications involving unidirec-
tional fiber reinforced composites; these can be idealized at the macrolevel as a pseudo-
homogeneous transversely isotropic material. Consequently, the preceding six inde-
pendent constants now become dependent on the four independent elastic constants,
Eir, Err,Grr and vir , where (L,T) is the material coordinate system rotated by the
angle Q with respect to (X,Y), see Fig. 1(b).



Thus,

by = Bu COS‘(Q - <p) + (2312 + Bss) sinz(ﬂ - (P) 0082(9 - (p) + B Siﬂ‘(ﬂ - (p)

by = Bmcos*(Q—¢)+ (2Br2 + Beg) sin?(2 — ) cos? (2 — ) + By sin(Q — @)

bia = By + (Bu + By — 2By — Bse) sin’(Q - (p) cosz(ﬂ - go)

bes = Bes+ (Bu+ Bn2—2B12— Beg) sin?(Q — ) cos?(Q2 — )

big = [Basin’(Q—¢)— Bn cos? (R — ) + 3 (2B + Bes) cos 2(0 — )] sin 2(82 — ©)

b26 = [c052 (Q -— (p) - Binz(ﬂ —_ (p) - -;- (2312 + Bss) 0082(Q - (P)] sin 2(9 - (P) (g)
where

Bu=g Ba=ss Ba= i wi Ba=dk

Note that this special case of transverse isotropy does not diminish from the generality
of the subsequent solution for the general anisotropic case; all that is required to recover
the general solution is to experimentally identify the six independent constants used in
equation (9).

A rigorous solution for this stress function can be obtained by employing the Fourier
transform. Assume the stress function to be expressed as

Flz,y) = o /‘” i O, etm¥se— i ds (10)
27w J-oo m=1

Then, on substitution into eq. (7) the characteristic equation is obtained. It has four
complex roots, which take the following form:

ps = —a+ib; pe = —c +id;

where a and ¢ > 0.

The Airy stress function must also satisfy the physical requirement that the stress
function is finite throughout the domain of the plate. Therefore, the following forms of
F;(zj,y;), which are automatically bounded at infinity, can be used for the upper half
plane (for y > 0),

Y A
-0

and for the lower half plane (for y < 0),
Flz,y7) = % / * [CocBrret 4 Cyelideon] &2 (13)

Note: Constants C for j =1, 2, 3, and 4 are functions of the Fourier variable s and are
determined by using the local stress continuity conditions at the boundaries between the
half planes ( y = 0) and by using the perturbation boundary conditions subsequent to
the determination of the total stresses at each crack location.

The stresses within the upper and lower half planes are calculated by using the second
derivatives of the stress functions [1]. Therefore, the stresses for the upper half plane are

oo . . .
o) = 51; /_ _ [C1 (—alsl + ibs)? elis=elsly 1. G (—cls| + ids)’ glide=clelv] ~+%ds  (14)



1 [ ; : :
ag) = ./; "~ g [Cl lde-alshy 4 Cze(-ds—cisl)v] e~ % ds (15)

o) = -21; . is [01 (—als| + ibs) e®*=alev 4 Cy (—cls| + ids) e("d'-d")"] e *ds (16)

and for the lower half plane
oJ) = 2—17r [: [03 (a|s| + ibs)? eltrteledy 4 Cy (clsf + ids)? e(“”"")"] e=ds (17)
1 00 . . :
a,(,;) =-/_ s2 [Cse(zb&alﬂ)v + C‘e(-d&clsl)v] e~ %dg (18)

o)) = -21; is [C; (a]s] + ibs) e@®**aleW 4 C (c|s| + ids) e‘“”“"’”] e *ds (19)
The continuity conditions for local stresses 7y, and ozy are identically satisfied, given
C+Co=Cs+0C; (20)

and

Ci (bs + ia|s]) + Ca (ds + icls]) = Cs (bs — ials|) + Cy (ds — icls]) (21)

respectively.
The solution of equations (20) and (21) for C3 and Cy in terms of C; and C; can be
written in the following form: ‘

Cs = 316'1 + Sng
Cy = 5301 + S0y (22)

where

_ Is|(a + ¢) +i(d — b)s
|sl(c — a;c-i:s;(d —b)s

Ssz =—|3|(c —a) 2-;1-';‘(1 —b)s (23)
R i
|s](c — a) +i(d — b)s

The strains are calculated by using the generalized Hooke's law. The normal strains
are

S1

3 =
Sy =

Ezz = 01102z + bua,,, + bwa,, (24)
Eyy = 012022 + b22oyy + boe0zy
From egs. (24) the strains for the upper and lower half planes can be obtained. Then
by using the strain-displacement relations [1]; the displacements for the upper and lower
half plane can be obtained:
u(z,y) = [Eedx
25
v(z,y) = [endy (%)
To obtain the singular integral equations we introduce the following auxiliary func-
tions:



£1(&) = 2l (2,0) — v (@,0)] (26)

1) = 2l (2,0 — v (&) @)

Expressions for the unknown constants C; and C; can be determined in terms of these
auxiliary functions, since we know that f (t) and f2(t) are nonzero only within the crack
region (i.e., —a <t <a). Therefore,

a D, f1(t) = Dafa(t)
"« DD, — DyDs et (28)

Dsf,(t) — Difa(t)
. " D.Di—DaDs e*dt (29)

01 =

S

—
—3

where
2als] [|s} (a + ¢) +i(d —B) 8] b1
i
sls[s(d—-b)—ilatc)|s

“ (a2 4+ 18?) gc|s| + ids) b2 (30)
Dy = 2cIsl.st [-s(d-b)—i(a+ c)|sl}

‘ (@ + d2) (als| + ibs)
Similarly, C3 and Cy can be expressed in terms of the auxiliary functions by using egs.
(22) and the results of egs. (28) and (29).

Substituting expressions for the constants C., into the local stress equations (14)
through (19) results in the formulation of a set of double integral equations with respect
to the Fourier variables s (—0o0 < 8 < c0) and (—a < t < a). Integrating with respect
to s will give a set of singular integral equations with respect to t, which are valid for
any jth crack within its own local coordinate system (Zj, ¥;)

D,
D,

Ds=

@ L (%[5 6)-2 _Qz_]
Ozizs = 9x [ o [f:l(tz)bqu + fi(ts) 200 dt; (31)
1 a.
oG = 5 /_ ; [fjl(tj)f%; + ffl(tj)ggé';] dt; (32)
; 1
09, = [ [1a50 + e g | )
where
Qo= aclla+c)+ (- ay] [ - z;)? + 2(t; — z3)y; + (a® + V) o (34)
x [(t — 23)" + 245 — z)ys + (@ + )]
Q= Ri(t;—z) +9; [Ra(t; — )" +9iRalti = 25) + y}Ry| (35)
with



with

with

with

R, = a%bc+ tc+ 2abc? + 2%cd + ac’d + ad’®
R, = atc + 202 c + bt + 203 + 2ab*c? + 2a%¢® + act

+2a%bed + 26%d + 2abc*d + 2a%ed? + 2ac*d® + 2abd® + ad*
Rs = a%bc®+b3c® + 2abc* + 2a%cd + 4a?b2ed + 2b4cd + a3c2d
+ab?c?d + abed? + b3cd? + 4abc®d? + a®d® + ab®d® + 2abd*

Ry = (a’+b’) (c2 +d’) (a’c+b’c+ac2+ad’)

Q= Rs {(tj - zj)s Re +y; [R'] (tj - $j)2 —y;Rs (tj - ;) + 'yng]}

& &

Ry

Q= Rm(tj - .'Bj)3 + y; [— (t,- - :z,-)z Ry +y; (t; - :n,-) Ry2 + yles]

Q4 = R {(tj - zj)3 Rl4 +y; [Rls (tj - 27_,')2 + y,-(t,- - :Dj)Rls + yle'l]}

Ry
Rss
Rie
Rir

Qs= Rus(ti—z;) +y [Rm(tj — z;)? - y;(t; — 7;)Rao + ¥} RD]

Ryo
Ry

R12

R13 =

(a® +8%) (¢ + &)

(a%c + bPc+ac® + ad?)

a?be + b + 2b%cd + ac’d + 2abd? + ad®

a3c? + ab?c? + a2c® — b?c® — 20%bed — 2b%cd
—2abc?d — a°d? — ab?d? + acd® — bcd? — 2abd’
(a® +8) (¢ + &) (be + ad)

bc+ ad
(a’—b’)c—2bd(a+c)+a(c’-d2)
= bc® + ad + ab?d + bed? + 2bd (be + ad)
(az+b2) (c’-i—d’) (a+¢)

a+c

2ab + be + ad + 2cd

a3 + ab? + 2a%c + 2ac? + ¢ + 2abd + 2bed + ed’
2abc? + bc® + a°d + ab%d + 2a’cd + bed?

(36)

(37)

(38)

(39)



with
Ry = c(a.2+b2)+a(c2+d2)
Ris abe + Be + 2b%cd + ac’d + 2abd® + ad (40)
Ry = a’c*+ ab?c? + a2c® — b2c® — 2a%bed (41)
—otPed — 2abcd — a*d? — ab?d? + a’cd® — bPed® — 2abd®

and

Qe = Bs{(ti—=)’ Bu+y; [Raa (85 - z;)* +; (t; — 2;) R + GRsl}  (42)
with
Ry = ad + be

Ry = —a2c + b%c — ac® + ad? + 2abd + 2bcd
Ry = bc"'+a"d+ab’d+2b’cal+2abd’-}-bcal2

Note, that the special case of an isotropic material can be recovered by the following
substitutions: b =d =0, and a = ¢ = 1, thus gvingliy=Rs=Rr =Ry = Ryg= Rz =
R15=Rl7=R19=Rz1=Ras=0;Rs=1;R4=Rs=Rs=Ru=R13=Ru=Rls=
Rayp = —Ras = 2; and Rp = Ryg = 6. The parameters Q; then become

§ = a[tj— =)+ 31,2]2 (43)

Q) = 2y;[3(t; — =)' + ¥ (4)

Q) = 2(t;—z5) [t — =) - H (45)

Q) = —245[(t —2)" ~ o] (46)

Q) = 2(t;— =) [(t5 — =) + 3v7] | (47)

Q) = 2ty — ) [(t5— 25)* — 93] = @5 (48)

Q¥ = —2y; [(t; — z)* — 93] = @5 (49)

and the stresses reduce to the isotropic stress formulas derived previously in reference

[2].

This completes the formulation of the fundamental problem (or local stress state)
for the jth crack. Henceforth, the formulation of the multiple crack problem will be

addressed.



4 TOTAL STRESS FORMULATION

The total stress state ,(o7,) for the pth crack is defined as the local stress state of the
pth crack (o%,) plus the contribution to that stress state of all remaining cracks. This

2z

may be represented mathematically as

n-1

paﬂ(%, Yp) = 0%, (5, ) + Z 6"11:3[3.1‘ (zp, Yp)» Vi (e yp)] (50)

=1
for p = 1,...,n,where 67, is defined through standard tensor transformation of the stresses,
ie.,

Frz = PirPmzOim
and Bir, Pms are the direction cosines between the (;,v;) and (zp, Yp) coordinates with j
identifying the remaining cracks. Note, this statement does not imply that the concept
of superposition has been invoked, since the stress perturbation boundary conditions (see
egs. (5)) have not yet been utilized to determine the unknown auxiliary functions.

For functional compatibility within eq. (50), coordinate transformations must be
simultaneously applied to all remaining jth crack coordinate variables. As a result, the
dominant part (i.e., the first term of eq. (50)) possesses a singularity whereas the regular
terms within the summation lose their original singularities and yet still contribute to
the total stress state, as one might expect.

By replacing subscript j by p in egs. (33 and 32), respectively, and evaluating them
at y, = 0, the singular terms of the singular integral equations are obtained from the first
term of eq. (50) applied for shear (04y) and for normal stress (0yy)- Finally, the variables
z and t are normalized by using z, = a,€ and &, = a,7,where { and 7 are defined between
-1 and 1. Therefore,

@ 1 I (%) y J22(7p)

o2, == f_ . [Egy)T:_ et EZ} m 2, dry (51)
1 n

= -1{ W ;f:lfg + B "f'pﬂ-("rg:)o] & (52)

where E;, and E,, are material-related coefficients proportional to local z-direction stiff-
ness (denoted by superscript 1) or local y-direction stiffness (denoted by superscript
2) with respect to the local crack coordinate system. Consequently, we will call them
modified stiffness parameters (MSP’s). The MSP’s are

y _ @+ b?) + a(c? +d?)) (53)
= 2ac [(a + C)2 + (b -— d)2] bn
EP® = (a® + ¥?) (2 + d?) (ad + bc) (54)
7" gacf(a+0) +(b—d)] bn
ay _ (bc + ad)
B 2ac [(a +o)’ +(b— d)2] bu )
B0 (a2 + b%) (2 +d?) (a+¢c) (56)

W 2c [(a +e)+(b- d)z] by

10



Xj sinqﬁ +Yj coS§

/*" %
Xj COS@j - ¥ SINGy
— X, U

Figure 2: Geometric relationships between a pair of c1.'acks and their local variables.

For the isotropic case

Ez(:) = E';(,l) =0

and

E
ng(ll) = Es(y?) =3 (57)
whereas in the orthotropic case, only
B = EFD =0

L2 w

The regular terms of the singular integral equations are obtained by transforming
the remaining stresses into the local pth crack coordinate system simultaneously with
coordinate transformation. The coordinate transformation between the z;,y; and Zp, ¥p
systems is determined from the following geometric relationship (see Fig. 2):

rix + 33008 — Y;8ing; = Tpx + TpC08pp = YpSingp (58)
riv + T;8inip; + Y;c08p; = Tpy + TpSingp + YpCOSPp (59)

where r;x, Tjy are the rectangular components of the jth crack position vector referred
to the global coordinate system X Y, and (; is the angle of rotation between the global
and local systems.

One component of the regular part of the total stress is obtained by transformation
of the stresses from jth crack local coordinate system into the pth crack local coordinate
system simultaneously with the coordinate transformation and substituting yp, = 0:

&im == ag)?j - "gzu) sin.0 cos@ + Ug)w .(Cosz 9 — sin® 9) (60)
Thove = oY), sin*6 + U,(,J.z,. cos® 8 — 20'9.)”. sin 0 cos 8
p¥pP i3 1535 V5

11



where 8 = ¢, — ¢;. Therefore, we can obtain from egs. (58) and (59)

z;=p1 + Tpcosd
y;j = D2+ Tpsind (61)

where (pl,p2) is the vector connecting the centers from jth to pth cracks expressed in
the jth coordinate system:

= (rpy —rjy)sing; + (rpx — 1ix) Co8 Pi (62)
P2 = (rpy — i) cos @ — (rpx — Tix)eing;
The regular, normalized form of the parameters Q; for i = 0,1,...,6 is obtained by

using the coordinate normalization z, = ay¢ and t; = a;7, in addition to the coordinate

transformation, to produce the parameters Qlres) .

Q™ = ac [(a. +o?+(b- d)z] [(a,«r —p1 — aptcosf)’ +
2b(a._,-1'—p1-—a,,€oos0)(p2+a,€sin0)+(a’+b’)(pg+a,,§sin0)2] (63)
[@s7 —p1 - a,€ cos0)? + 2d(a;7 — p1 — 8p€ cos 6) (p2 + ap{ sin ) +
(@ + ) (p2 + g€ sin )’

QI = R, (a;7 — p1 — apf cos 8)® + (p2 + ap¢ sinf) [Rg (a;7 — p1 — 6p€ cos 6)? 64)
+ (p2 + apE 6in8) Rs (a;7 — p1 — ap€ c0sb) + (p2 + ay€ sin 6)’ R4]

A = {(a,-r—m—a,ecose)’Re+(pz+a,esine)[Rv(a,-r—pl—a,ecoso)’

—(pz+a,£sin0)Rs(a,-1'—p1—a,,£cosﬂ) +(pz+a,£sin0)2Rg]}R5 )
65

QY™ = Ruo(asT — p1 — apé cos6)® + (p2 + ap€ sinf) [ (a;7 — pr — apé cos 6)" R

+ (p2 + ap€ 5in6) (a;7 — p1 — ap€ cos0) Ru +(p2 + apf sin 6)* Ry )
66

2"”) = {(a,--r — p1 — ap€ cos 0)3 Ris + (p2 + € sin6) [R15 (aj7—p1 — %59059)2

+ (P2 + a,€ 5in 0) (a;7 — pr — ap€ cos6) Rag + (P2 + ¢ sin 9)* Rl-,]} Rs
(67)

QU™ = Ryg (a;7 — p1 — apk c088)° + (p2 + 0p€ sin 6) [Rao(a;7 — Pr — a5{ cos 0)*

— (p2 + aptsinb) (a;7 —; _ ay€ cos8) Rao + (2 + € £in8)” Ro) -
68

Qg"”) = {(a,--r — p1 — ay€ cos 9)3 Ry + (p2 + ap€sinb) [R22 (a7 —p1 — ap€ cos 6)*

+ (p2 + ay€sin6) (a;7 — 1 — ay€ cosf) R +(p2 +a,,£sin0)2 R13]}R5
(69)

12



So the regular normalized component of the shear stress becomes

. 1 1
83,,, = [ Yers fnlty)drs + [ bera Fat)er (70)
where
a; 1 T r . .
ker; = -2—’——75)- [—- (Qg e9) _ Q:(, eg)) sinf cos 0 + Q§"’) (cos2 g — sin® 0)] (71)
T b11Qo

kerp = i’;-r-—l— [- (@ - QF™) sinf cosf + QY™ (cos® § — sin® )] (12

The regular normalized component of normal stress is

. 1 1
&;rvp = /;1 ket3 fjl (tj)de + .Ll ker4 fjg(tj)d‘l'j (73)
where
kers = -"2-’7;-——1(—;) Q¢ sin? 6 + QY™ cos” 0 — 2Q{*? sin 6 cos 6] (74)
b11Q0
a; 1
kery = -i———;— §"’” sin @ + Q('eg) cos2 0 — 2Q§"°") sinf@cos @ (75)
27 bzfo) ) [ ¢ ]

Thus, the total stresses (o7, and 0Z,) for n cracks can be written in the following

form:
na’:; = {-El ker 1fndT + f_ll ker 2f12dT +..+ Ill ker lf(n—l)ldT

) n(2) (76)
+ 3, ker o fen_npdr + 2= [ Sakdr + Ze 1 ﬁ%dr}
.."3; = {f—ll ker 3 fudr + f_11 ker f1od7 + ... + fll ker 3f(n—1)1d7 (77)

(1) n(2)
+ [, ker o fe-nydT + Z82 1 Stdr + B Luar]
The formulation of this system of singular integral equations is complete once the
single-value conditions for the auxiliary functions fj, are chosen. In the case of straight
cracks, this single-value condition [3] is
1
/_ fil(r)dr =0 (78)

where j stands for the jth crack, and 7 takes on the value of 1 or 2.

5 SOLUTION FOR THE STRESS INTENSITY FAC-
TORS

The integral equations obtained are of the Cauchy type; thus for sharp cracks, the stresses
and strains will have a square-root singularity, and the classic definition of a SIF may be
used (see refs. [4], [5], [6] and [7]). Therefore, the mode I and II SIF’s for the jth crack

are
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K(1) =lim{2(¢ - DI {s07,(6,0)} (79)

K1) = limlz2(¢ - 1E {s5,(¢,0)} (80)
K(-1) = Jim [-21 + O} {,95,(6,0)} (81)
K(-1) = Jim [-201 + Ol {so5, &, 0)} (82)

where the normal and shear stresses, eqs. (76) and (77), are used. Note that this
definition of a SIF was originally developed for an isotropic material wherein the mode-
I normal stress is related only to the normal crack-opening displacement Av and the
mode-II shear stress is related only to the shear displacement Au. The same definition
can also be applied to anisotropic materials by assuming that modes I and II are based
on normal and shear stresses only; however, as will be shown in egs. (86) to (89), these
stresses are driven by a mixed mode displacement (Av and Au) field.

It is well known [3] that the auxiliary functions (f) can be expressed as a product of
the unknown bounded functions (H) and the known singular weight functions (w):

f(r) = H(r)w(7) (83)
The singular weight function w for a sharp crack is
w(r) = (* -1)7# (84)

Erdogan [3] found, for example, that in the case of a Cauchy-type singular integral
equation (eqs. (76) and (77)), the dominant part can be expressed in terms of the
function H evaluated at the tips of the jth crack:

1 dr ix/2
1P Sy - By -0 00 ()
where 7 is 1 or 2, and O(7) is the higher order term, which in subsequent calculations
is neglected. Equations (85) can be substituted for the dominant part (last two terms in
egs. (76) and (77)) of the normal and shear components of the total stresses in egs. (79)
to (82). This substitution and subsequent evaluation of the limits at the crack tips results
in the redefining of the SIF’s, normalized with respect to /81 and 0%, and expressed in
terms of the functions Hy;:

K1) = [EO Hy(1) + BiP Hyy(1)] as/ar (86)
k(1) = [BEPH,, (1) + BiDHy;(1)] yfos/ax (87)
Ki(-1) = — [EEP Hy(-1) + Ei®Hy;(-1)] /as/an (88)
K1) = — [BEDHy(-1) + B2 Hay(-1)] as/an (89)

The Lobatto-Chebyshev collocation integration technique was employed, because it
is known to provide excellent results in dealing with the preceding Cauchy-type singular
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integral equations. The unknown functions H,; are determined at a discrete set of points
Ti, T2,y Tm called abscissas. In this way, each integral equation is reduced to a set of
algebraic equations with unknowns Hy;(1), Hyj(72), -y Hni(7m), Which are the discrete
values of the functions Hy;; hence its name, discrete auxiliary function. Note that H;; and
H,; are proportional, respectively, to the difference in shear and normal displacements
at the crack tips:

Au~H 1 )

Av ~ H2 (90)

Consequently, H,; can be used as a measure of the crack-opening displacement at the

crack tip.

Each of the singular integral equations subjected to the stress boundary conditions
(egs. 5) can be replaced by m — 1 algebraic equations with 2nm unknown parameters
(see ref. [2]).In the Lobatto-Chebyshev method, the abscissas are calculated according

to

T = cos%n-—}r: for r=1,..,m (91)

with the corresponding weights given by

m
= T em— = = . - 2
W = Wy 3m—1) and w, —3 for r=2,3,..,.m—1 (92)
The collocation points are then found by using the formula
_ (2z-rx _
& =cos 5 ——3 for z=1,2,.,m-1 (93)

In order to have the complete system of 2nm algebraic equations, the single-value con-
ditions (egs.(78)) are also expressed by using the collocation technique:

f: Hyj(:)w, =0 (94)

r=1

Thus, the resulting system of algebraic equations can be written in the form

[Al{H} = {R} (95)

where [A] is a fully populated 2nm X 2nm matrix of coefficients and {R} is the loading

function vector.
The unknown parameter vector {H} can be determined through inversion of the [A]

matrix; thus,

{H} = [AI{R} (96)

although only the appropriate values (i.e., H,;(+1)) are used to calculate the SIF’s for
the jth crack (see eqs. (86) to (89))-

The general solution for any multicrack problem is now complete with the automatic
generation of the associated FORTRAN code for the evaluation of egs. (96). This
FORTRAN program was utilized to obtained the following results, which are compared
with published results obtained by other methods.
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6 STRAIN ENERGY RELEASE RATE

In fracture mechanics, perhaps the most important physical quantity is the strain energy
release rate (Gr), usually denoted by G. Cherepanov]8] discussed the generalized formula
for G given an anisotropic material.

G =412+ (%, (=,0) o (s~ da,0") —v(c — da, 07)] +

oZ, (z,0) [u(z — da,0*) — u(z — da, 0—)]} dz (97)

Using the roots of the characteristic equation in terms of the real components eq. (11),
we can show that

(a + ¢) (ac — bd) + (b + d) (ad + be)
(ac — bd)? + (ad + be)’ bos + k3 (3 +¢) bu] (98)

or utilizing egs. (102) and (105), developed subsequently, we can obtain a simplified
expression for Gr, that is

s
Gr=75 [k{

GT = 12[ eff (a+C) bl] (99)
where
Eg)

Koy = k¥-ET§7 + k3

and represents an effective SIF. Note the significant coupling between the normal and
shear stresses and the displacement components in this effective SIF.

In the case of an isotropic material we may substitute a = c =1, b = d =0,
EQ = EQ), and by = b2z = 1 into eq. (98). Consequently, the well-known fracture
mechanics relationship is recovered:

Gqlis) — % {[kf'“)]z + [kgm)]z} (100)

7 NUMERICAL APPLICATIONS

The focus of the following parametric study will be limited to investigating the influence
of the crack geometry configuration and strength of anisotropy on the resulting driving
force. To accomplish this the four independent elastic constants were taken to be

Grr
— = 04
Err
vir = 0.25
Err
— = 1.0
Err

and the strength of anisotropy, %?",is a specified constant greater than or equal to one.
Note that Err is always chosen to be the weaker direction, i.e., to be less than or equal
to Eyz. Although, the influence of Grr and vrr on the driving force is important, this
aspect of the parametric study will be reserved for future work.
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7.1 Two Crack Interaction

7.1.1 Collinear Cracks

In order to validate the results obtained with the automatically generated FORTRAN
code, the well-known problem of two parallel interacting cracks is considered here. The
plate, with two cracks of length 22 and a preferred direction defined by Q= 22°is
subjected to a normal far-field stress state (6%y) as shown in Fig. 3. Results are obtained

Figure 3: Geometry and loading condition of two collinear cracks problem.

over a wide range of strengths of anisotropy, as defined by the ratio ErL/Err. As Fig. 4
shows, the SIF’s do not depend on the strength of anisotropy, even though the discrete
auxiliary functions do. The results indicate that at both the inner and outer crack tips
mode-I SIF’s are exactly the same as the isotropic SIF’s from references [9] and [11], and
mode-II SIF’s are zero for this configuration.

Although, the mode-II SIF is zero over the entire range of strengths of anisotropy
examined, the shear crack opening, as represented by H; (see eq. (90) is zero only for
the special case of an isotropic material (i.e., Erp/Err = 1). Figure 4 clearly shows that
even small amounts of anisotropy (Err/Err > 1) produce shear displacements at the
crack tip and that this shear displacement increases significantly for 1 < ErL/Err <5
and becomes constant for Erp/Err > 15. Consequently, two collinear cracks within a
transversely isotropic material will always (provided 2 = 22°) produce a mode-I crack tip
local stress field with a mixed-mode local displacement field even when the strength of
anisotropy is small. This fact can be understood, even for the case of a single crack[10],
by examining egs. (86) to (89), where it is apparent that in an anisotropic material
the normal and shear stresses are coupled with both normal and shear displacement
components, respectively.
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Figure 5 shows how the MSP’s vary with respect to the strength of anisotropy
Er1/Err. Using the isotropic values (i.e., Epi/Err = 1) of the MSP’s, we can ob-
tain the results given in equation (57). Increasing the strength of anisotropy significantly
increases EQY, E® and E{D), while E( remains nearly constant. Note that EZ) = E{})
over the entire range of Erz/Err. Revisiting eq. (87) and Figs 4 and 5, explains why
the mode II SIF is zero. It stems from the fact that although both normal and shear dis-
placements are induced, Eg) is so much less than Eg) that the influences of the normal
and shear displacements are counteracted.

As discussed previously, the total Gz represents an important measure of the driving
force for crack propagation in fracture mechanics. The Gr’s at the inner and outer crack
tips for the two collinear cracks are shown in Fig. 6. Clearly, the maximum Gr’s (for
both the inner and outer crack tips) occur in the isotropic case. In the anisotropic case
when Err/Err > 15 the Gr's rapidly reduce to nearly 50% of the isotropic values.
Although both the Gr (Fig. 6) and the SIF’s (Fig. 4) indicate that the inner crack tip
will propagate, only the Gr’s unambiguously indicate that as the strength of anisotropy
increases, the crack-driving force is reduced. Thus, we can conclude that (1) the isotropic
case gives rise to the greatest driving force and (2) that the SIF (unlike the Gr) is unable
to detect the decrease in the crack-driving force as a function of strength of anisotropy.

Now let us examine the influence of changing the preferred direction angle Q on the
same collinear crack configuration with a strength of anisotropy ratio Err/Err = 40.
Results shown in Fig. 7 indicate that the mode-I SIF’s are the same as those previously
obtained, even though the discrete auxiliary functions show that the normal and shear
crack-opening displacements vary significantly with preferred direction. Note that the

19



© Shear displacement, Au

© Normal displacement, Av Jpen symbols denote outer tip
A Mode- SIF, k Solid sumbols denote inner tip

8 S I S s s S R RN S S RN RERNE R MR RN 8

6 6
c N
©

4 4
3 &
2 -]
s' 2 2 8
3 £
%
8 0 08
2 =
g &
8 2 23
o =

-4 -4

-6 -6

0 10 20 30 40 50 60 70 80 90
Preferred direction, 2, deg

Figure 7: Discrete auxiliary functions and normalized SIF’s versus Q for two equal
collinear cracks in a composite plate (strength of anisotropy Err/Err = 40; subjected
to far-field normal stress,see Fig. 3).
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shear displacements are zero only for the special cases in which the preferred direction is
parallel (Q = 0°) or normal (22 = 90°) to the crack configuration; otherwise both openings
have nonzero values. The local shear crack-opening displacements maxima occur at
Q) = 22° and 68°, whereas the local nonzero minimum for the shear displacement occurs
at ) = 45°. Conversely, the normal crack-opening displacements are appraximately
constant over the range 0 < © < 40 with the maximum value occurring at 2 = 30°%; it
then significantly decreases when 2 > 40, until a value equivalent to 30% of the maximum
normal opening is reached at Q = 90°. Cleatly, this indicates that although mixed mode-
displacements may be observed, in actuality, counter to common expectations resulting
from isotropic materials, the anisotropic case may have only a mode-I driving force.

In Figure 8 the MSP’s are shown as a function of the preferred direction orientation
angle Q. Note that the E(,},) curve relative to the curve E,‘:,) is symmetrical about the
line © = 45°. The other two MSP’s are again equal to each other and to zero for the
orthogonal cases 2 = 0° and 90°. Consequently, EQY and E{) must be related to bie
and byg (see eq. (9)). In order to give a clearer physical interpretation to EQ) and E®
let us relate them to the corresponding material parameters Ez; and Er.

Considering the fact that
E® = E{) (101)
we can substitute egs. (54) and (55) into eq. (101) and solve for bga:
by = b (a® +1) (2 + °) (102)

Or in terms of the roots of the characteristic equation

Irpapispie = %"5- (103)
11

In the case of a transversely isotropic or orthotropic material, b = d = 0, so eq. (103)
reduces to a well-known mathematical relation of the following form:

E
a%c? = === 104
2 | (104)

By substituting eq. (102) into eg. (56), and the resulting equation into eq. (53), we
find that

2,32
(1) — 2)C(a +b)+a(C2+d2)
EY =EG o (105)
Thus, by using eq. (104) together with the transversely isotropic or orthotropic form of
eq. (105) (i.e., b= d = 0) we can show that

EQ [E
[E,(,f,)] b=d=0 Err (106)

On the basis of eq. (106) and our observations from Fig. 8 we may conclude that
for the general anisotropic case, Eg) is proportional to the square root of the effective

Young’s modulus in the local z—direction and Eg) is proportional to the square root of
the effective Young’s modulus in the local y—direction. Note, however, for the general
anisotropic case the constants of proportionality are interdependent.
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The importance of being able to use the Gr as a damage propagation criterion is
once again illustrated in Fig. 9, which shows the total G versus the orientation angle €.
Clearly, there are a number of angles at which Gr extrema exist. The global maximum
occurs at £ = 0°, and the global minimum at = 90°, for both inner and outer crack
tips. The other two important angles at which the Gp’s reach a local minimum and
maximum are 2 = 12° and = 42°, respectively. Again a comparison of Figs. 7 and
9 shows that the Gr’s can indicate the critical angles of interest, whereas the SIF’s are
completely insensitive to variation of the preferred direction.

7.1.2 Parallel cracks

Figure 10: Geometry and loading condition defining two parallel crack problem.

Now let us consider the variation of the SIF’s, the crack-opening displacements, and
the Gr’s for the case when the two cracks are not collinear. A convenient parameter
that can be controlled is the inclination angle designated a between the horizontal axis
and the line connecting the inner crack tips in Fig. 10. An example of the previous case
(collinear cracks) is easily obtained by setting @ = 0° . The constant parameters are the
distance between inner crack tips, 0.1a;(where 2a, is the crack length of crack number
1), the strength of anisotropy Err/Err = 40; and the preferred direction 2 = 45°. As
a result of changing the crack configuration, the SIF’s are no longer constant for the
inner crack tips; those associated with the outer crack tips, however, are not significantly
influenced. As illustrated in Fig. 11, mode-I SIF for the inner crack tip monotonically
increases with the angle o; whereas mode-II SIF is zero only for a = 0° and 90° and
attains a maximum at a = Q = 45°, as we might expect.

It is interesting to analyze the discrete auxiliary functions which approximate the
shear and normal crack-opening displacements, Au and Av. The shear term of the inner
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crack tip is zero only when a = 40°(even though the shear stress is at a maximum). It
is larger for this configuration at & = 90° (when the shear stress is zero) than it is for
the collinear crack configuration. Normal crack-opening displacements are the largest
also for & = 90° . Note that changing the crack configuration by changing a does not
change the material properties because they are defined in the local coordinate system;
therefore, given the preferred direction §2 = 45° we can find the pertinent MSP’s in Fig.
8.

Once again the combined effect of mode-I and -II SIF’s and the normal and shear
local displacements are captured by the single scalar measure known as the Gz (see eq.
(97)). Figure 12 shows the Gy at both the inner and outer crack tips as a function of
the crack configuration angle . The shapes of these curves resemble the shapes of k;
and kg for the inner crack tips (the degree of influence that k, and k; have on the Gz is
clearly shown in eq. (99)). Since the maximum values of ki and k; are reached at 90°
and 45°, respectively, the maximum value of the Gr would be expect to occur somewhere
in between. Figure 12 indicates that for the inner crack tips this maximum is reached
when @ = 70° however, at the outer crack tip the Gz is only slightly affected (as are k;
and k) by a change in o, and it reaches its maximum when a = 90° .

7.1.3 Nonparallel Cracks

Consider a related case wherein the material strength of anisotropy is Err/Frr = 40,
the preferred direction is denoted by = 30°, and the two cracks of equal length are
configured as shown in the Fig. 13. This figure indicates that crack ab remains horizontal,
while crack cd rotates around the crack tip c; where the crack tip distance between tips
b and ¢ remains constant. Here we will examine the influence of varying the angular
orientation of crack cd, ¢(2), from 0 to 180°. Figures 14 and 15 show the mode-I and -II
SIF’s, respectively, at the four crack tips. Notice that the outer crack tip of the horizontal
crack (tip a) is only slightly affected by the change in angular orientation of the crack
cd. Whereas, the other crack tips (b, ¢, and d) display significant and complex interactive
behavior for both mode-I and -II SIF. For example, mode-I SIF for crack tip b has a local
maximum at 21, 42 and 132°, and a local minimum at 0, 31, 122, and 180°, while crack
tip ¢ starts at the same value as tip b, then smoothly decreases to appraximately zero
(within the range 80 < ¢(2) < 140°) whereupon the SIF sharply rises to again the same
value of SIF as that of crack tip a, at ¢(2) = 180°. Similarly, extremum are observed for
the mode-II SIF at a variety of angle, that is 20, 43, 110, 120 and 132°.

The actual calculated Gr’s are shown in Fig. 16. By comparing Fig.16 to Figs. 14
and 15, we can observe that the location of the extremum for the Gr’s are similar to the
SIF’s. However, it is evident that the Gr for outer crack tips a and d are dominated by
mode-I SIF, whereas inner crack tips b and c are significantly influenced by both modes.
Figure 16 also shows that Gy is the largest at crack tip b for 0° < ¢(2) < 100° and
123° < ¢(2) < 153° indicating possible self similar crack propagation within this range.
Note that when crack cd becomes aligned with the preferred fiber direction, Gr (at crack
tip b) reaches a minimum while crack tip ¢ reaches a maximum. Thus, we may conclude
that at this critical configuration, ¢(2) = 30°, the inner crack tips b and ¢ may be driven
towards each other and connect to form a macro kinked crack.
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Figure 13: Geometry and loading condition problem of two non-parallel cracks.
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Figure 16: Normalized Gr versus crack-2 angle ¢(2) for two equal cracks in a composite
plate (strength of anisotropy Err/Err = 40; reinforced at = 30°; subjected to far-field
normal stress, see Fig 13.
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Figure 17: Geometry and loading condition of two inclined cracks.
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7.1.4 Influence of Crack Spacing

To determine the influence of crack spacing, let us consider the preceding two crack system
for the critical configuration $(2) = Q = 30° and analyze the behavior of these cracks to
examine how the G varies with respect to the normalized inner crack tip distance d (see
Fig. 17). As we would expect, given the results shown in Fig. 13, the Gr’s of the outer
crack tips are hardly influenced by the change in positions of the cracks. But the Gr’s for
the inner crack tips (b and c) display a strong interaction, especially for 0 < d < 0.2a,, as
shown in Fig. 18: the closer the crack tips, the higher the normalized Gr, and thus, the
smaller the far-field stress state required to cause the cracks to propagate toward each

other.

7.2 Three Crack Interaction

Consider a transversely isotropic plate with a strength of anisotropy Err/Err =40 and
a three-parallel-crack system as shown in Fig. 19. The two cracks denoted ef and cd
are always symmetric, with respect to the horizontal line that coincides with crack ab.
First let us keep the distance between inner crack tips b, c, and e (Dy) constant at
0.1a;,while the angle Q , describing the preferred direction, is varied. Mode-I SIF’s for
tips b, ¢, and e are shown in Fig. 20. A number of observations can be made from
Fig. 20. First, the k, for crack tip b resembles an inverted parabola with a maximum
at O = 45°. Second, k; for crack tip b is the largest of the three inner tips - for all
preferred directions because of the magnification influence of cracks ef and cd (situated
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Figure 19: Geometry and loading condition defining three parallel cracks problem.
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Figure 20: Mode-I normalized SIF’s versus Q2 for three parallel cracks in a composite
plate (s)trength of anisotropy Erz/Err = 40; subjected to far-field normal stress, see
Fig. 19).
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Figure 21: Mode-I normalized SIF’s versus strength of anisotropy Err/Err for three
parallel cracks in a composite plate (reinforced at 2 = 60°; subjected to far-field normal

stress, see Fig. 19).

in front of crack ab). Similarly, because of the mutual shielding of the cracks above
and below, the k; for cracks cd and e f must be smaller . Third, the k; at inner tips
¢ and e are identical in the range 0 < @ < 25, but they begin to deviate from one
another, in a symmetrical manner, for preferred directions > 25°. Also since k; for
crack tip e is larger than that for crack tip ¢, this would suggest that the influence of the
singular stresses is transmitted over greater distances along the preferred direction, thus
confirming the concept of stress-channeling (or in our case damage channeling) along
the preferred direction, as discussed by Spencer{12]. The distance of influence is clearly
dependent on the strength of anisotropy specified, as can be seen in Fig. 21.

Mode-II SIF’s for the three inner crack tips are shown in Fig. 22. Here, the absolute
value of ks for crack tip b is approximately zero for the various preferred directions and
exactly zero for the orthogonal conditions (Q = 0, 90°) . The absolute value of k; for
crack tip e is the largest of the three with a local maximum at © = 25°. Again, this is
a function of the directional stress channeling effect. Also, note that the absolute values
of k, for crack tips ¢ and e are identical when the cracks are parallel and normal to the
preferred directions; however the magnitude at © = 0 is more than twice that for 2 = 90.

The variation of the Gt as a function of preferred direction, for the three inner crack
tips b, c, and e are shown in Fig. 23. Clearly, the Gy combines all of the aforementioned
characteristics for each crack tip into one convenient parameter that exhibits a strong
dependence on the preferred direction angle . Local maxima for these curves are located
within a 10° range centered at Q = 45°. It may be concluded from Fig. 23 that crack
propagation is easiest when the preferred direction makes a 45° angle, thus connecting
through reinforcement (or damage channeling) crack tips b and e. Hence, as a result of
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Figure 22: Mode-II normalized SIF’s versus angle Q) for three parallel cracks in a com-
posite plate (strength of anisotropy Err/Err = 40; subjected to far-field normal stress,

see Fig. 19).
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Figure 23: Normalized Gr versus Q for three parallel cracks in a composite plate (strength
of anisotropy Err/Err = 40; subjected to far-field normal stress, see Fig. 19).
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Figure 24: Normalized Gr versus horizontal component of the tip distance D;, for three
parallel cracks in a composite plate (strength of anisotropy Err /Err = 40; reinforced at
Q = 45°; subjected to far-field normal stress, see Fig. 19).

a physical crack propagation, we would anticipate a zigzag crack that develops through
the connection of cracks ab and ef .

Last, let us consider the case of two parallel cracks ef and cd that are a fixed vertical
distance apart (D, = 0.1a,) and crack ab is slid in between them. Figure 24 shows the
variation of the Gp’s for all crack tips as a function of horizontal position Dj, for the case
when © = 45°. When the parameter D), is zero, tip b is on the same vertical line that
connects tips ¢ and e. Thus, when crack ab is away from the parallel cracks Dy > 0, and
when tip b is between cracks cd and ef , Dy, < 0. Note that as crack tip b comes closer
to the vertical line connecting tips ¢ and e, the Grs are magnified; with the amplification
factor of the inner crack tips being significantly greater than that of the outer crack tips.
Conversely, when D, < 0, all inner tips become strongly shielded, so the inner Gr’s
sharply drop off, almost to zero. Note that crack tip e has the most rapid decrease and
quickly reaches a value less than that of tip c.

7.3 Horizontal Notch Interaction With Three Microcracks

The final problem to be consider in this paper consist of a transversely isotropic plate,
with a strength of anisotropy (Err/Err) equal to 40, that contains a large horizontal
notch (of length 2a;) and three radially oriented microcracks (of length a2 = a3 =64 =
0.1a;), as shown in Fig. 25. The radial distance between the inner tips of the notch and
the three microcracks remains fixed at 0.005a;, while the orientation (angle Q) of the
preferred direction is varied from 0 to 180°. The Gr’s for all the inner microcrack and
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Figure 25: Geometry and loading condition defined for a horizontal notch and three
microcrack problem.

notch tips are shown in Fig. 26.
Evidently, the Gr for notch tip b is larger than that for any of the three microcracks

except when the orientation is within two small regions: 8° < N < 20° and 70° < Q) < 98°.
At these values the G of the inner tip of the 45° microcrack ef becomes greater than that
of the notch. All Gy curves display strong and complex dependence on the orientation.
Numerous local extrema exist with the maxima being noted as follows: for notch tip b, the
local maxima occur at 0, 38, and 140°; for microcrack tip g, 8 maximum occurs at 30°; for
microcrack tip e, maxima occur at 15, 80, and 155°; and for the horizontal microcrack tip
¢, the maxima occur at 0°, 40°, and 150°. Again, if the maximum-Gy criterion is used to
predict crack propagation, we may conclude that the crack will kink by connecting with
crack ef for the preferred direction when 8° < 2 < 20° and 70° < Q < 98°; otherwise it
will propagate in a self-similar manner.

Now let us orient the preferred direction Q at a fixed angle of 15° and vary the radial
inner tip distance between notch tip b and the three microcrack tips ¢, e, and g. Figure
27 shows the amplification effect (which becomes noticeable when the tip distance is less
then 0.1a;) resulting from the complex interaction of the cloud of microcracks with the
larger notch crack. Clearly, the Gr for notch tip b is the largest until the tip distance
is decreased to appraximately 0.04a,, whereupon the Gr for the microcrack inclined at
45° drastically increases — exceeding all other curves and creating the condition for the
crack to kink.

Finally, let us discuss the influence of the strength of anisotropy, as shown in Fig. 28.
Here, we assume that the preferred direction and radial tip distance are held constant at
Q) = 15° and 0.005a;, respectively, while the strength of anisotropy Er1/Err is varied.
When the material is isotropic (i.e., Ezr/Err = 1) the Gr at notch tip b far surpasses
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composite plate (strength of anisotropy Eri/Err = 40; tip distance, 0.005a,; subjected
to far-field normal stress, see Fig. 25).
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the Gr's of the remaining microcrack inner tips. However, even a small change in the
strength of anisotropy significantly influences the value of the G for all inner crack tips.
Note that when Erz/Err > 18, the Gr for the inclined microcrack tip e becomes the
largest. And since the crack having the highest G will propagate first, a kinked crack
will be generated by connection of crack ef to notch ab.

8 CONCLUDING REMARKS

A rigorous formulation has been presented for calculating the crack-opening displace-
ment, SIF and Gy at the various crack tips of a multicracked anisotropic medium. This
formulation has been shown to simplify exactly to our previous isotropic formulation
which was validated for a number of published crack orientations. The size, orientation,
and distribution of all cracks were considered to be independent parameters of the solu-
tion. This unique formulations is computationally efficient and offers accurate solution
capability. It allows us to easily perform numerous parametric studies to analyze the
contribution of each parameter on the local stress field and the characteristics of the
damage progression in an anisotropic (e.g., transversely isotropic) material.

The problems of two and three, collinear and non-collinear, interacting cracks were
examined. By varying the strengths of anisotropy, we showed that materials with pre-
ferred off-axis directions relative to the applied load produced highly mixed-mode crack
propagation, even when only mode-] type crack geometry was present. A small change
in the strength of anisotropy (when 0 < Erz/Err < 5) was shown to highly influence
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the Gz and crack-opening displacements for a given tip. These parameters then reached
a plateau when Eyz/Err > 15. Consequently, even slightly anisotropic materials should
be analyzed by using the fully anisotropic approach discussed in this paper.

Modified stiffness parameters (MSP’s) were presented as a function of strength of
anisotropy and preferred direction. We concluded that E{) and E{) are proportional
to the square root of the effective Young’s module in the local z— and y-direction,
respectively, and that the other two MSP’s are identical (i.e., E®) = E{})) and related to
b¢ and by such that they vanish under orthotropic and isotropic conditions.

The discrete auxiliary functions were shown to be related to the crack-opening dis-
placements Au and Av. We showed that for cases in which the preferred direction and
the applied stress do not coincide (i.e., off-axis orientations), a mode-I local stress field
is produced under mixed-mode local deformations, or alternatively, mode-I normal de-
formation results in a mixed-mode local stress field. Furthermore, the total Gr was
shown to be the most complete anisotropic fracture parameter (because of its sensitivity
in detecting changes in the strength of anisotropy and preferred direction). Thus we sug-
gest that for an anisotropic material it should be used as the crack propagation criterion
instead of the SIF.

Interaction effects were demonstrated for all fracture parameters. Amplification of
the Gr and/or the SIF was shown to occur when cracks were located in front of the
main crack. Conversely, reductions in the Gz or SIF were observed when shielding of
a crack, by other cracks located above and/or below it, was present. Finally, stress or
damage channeling was discovered to play a significant role in the mechanisms that govern
crack interaction, in that, stresses were channeled along the preferred direction, causing
nonsymmetric interaction, even in the presence of symmetric crack configurations.
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